Test post
Awesome summary
import autogluon as ag
from autogluon import TabularPrediction as task
train_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
train_data = train_data.head(500) # subsample 500 data points for faster demo
print(train_data.head())
label_column = 'class'
print("Summary of class variable: \n", train_data[label_column].describe())
dir = 'agModels-predictClass' # specifies folder where to store trained models
predictor = task.fit(train_data=train_data, label=label_column, output_directory=dir)
test_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
y_test = test_data[label_column] # values to predict
test_data_nolab = test_data.drop(labels=[label_column],axis=1) # delete label column to prove we're not cheating
print(test_data_nolab.head())
predictor = task.load(dir) # unnecessary, just demonstrates how to load previously-trained predictor from file
y_pred = predictor.predict(test_data_nolab)
print("Predictions: ", y_pred)
perf = predictor.evaluate_predictions(y_true=y_test, y_pred=y_pred, auxiliary_metrics=True)